

Improvements To Worker Assignment Problem

Trent Johnson

Department of Mathematics Georgia Institute of Technology

Jie Wu

Department of Information and Computer Sciences Temple University

Overview

- What is Bike Sharing System?
- Rebalancing
- Worker Assignment Problem
- Graph Matching
- Algorithms
 - TRM, LR, HS, GHS, IRS
- Conclusions

What is Bike Sharing System?

- Bike Sharing Systems (BSS)
- Docked vs Dock-less
- Benefits
 - Exercise
 - Eco-Friendly
 - Reduce Traffic
 - Cheap
 - Low Infrastructure

What is Rebalancing?

- Variable demand at stations
 - Time
 - Location
- Overflow/Underflow stations
 - Stations with too many bikes
 - Stations with not enough bikes

Gwenneth Leech. Empty bike docking station at Spring and Lafayette. New York City

Trucks for Rebalancing

- Optimal Hamiltonian Path
- Traveling Salesman
- Advantages
 - Centralized
- Disadvantages
 - Expensive
 - Cause Traffic
 - Pollution

Ted Timmons. BiciQuito bikeshare rebalancing truck. Quito

Crowdsourcing with Users

- Use existing users for rebalancing
- Incentive model
 - Rewards for stations
 - Free rides, prizes, etc.
 - Any user can rebalance
- Assignment model
 - Hire workers
 - Assign stations

Temporal vs Spatial

- Rebalancing
 - Divide into spatial and temporal domains
- Temporal
 - Predict station usage and workers
 - Divide into time slices
- Spatial
 - Create incentives/assignments
 - Use temporal predictions
 - Static problem in each time slice

Worker Assignment Problem

- Optimal assignment of worker and stations
- Partial Assignments
- NP-Hard
- Same number overflow and underflow targets
- Any number of workers

3-Dimensional Matching

- 3D hypergraph
 - 3 vertices per edge
- Weighted 3-dimensional matching
 - Find set of disjoint edges
 - Maximal sum of weights
- NP-complete

Graph Matching

- Matching problem
 - Pair every vertex with a neighbor
 - Set of disjoint edges with all vertices
- Maximal matching
 - Set of disjoint edges with maximal weight
- Many real-world applications
- Hungarian algorithm
 - O(V log(V))

WAP and 3D Matching

- Give each station a rebalancing target
- Clone stations by target
- Edges
 - (Worker, Overflow Target, Underflow Target)
- Matching to find the best edges/assignments

Two Round Matching (TRM)

- Round 1: Create overflow underflow matching
- Round 2: Create worker station pair matching
- 3-approximate

Y. Duan and J. Wu, "Spatial-temporal inventory rebalancing for bike sharing systems with worker recruitment, "IEEE Transactions on Mobile Computing, 2020.

Hungarian Search (HS)

- Hungarian Search
 - Improves a weighted matching
 - Iteratively optimizes
- Iteration of HS
 - Fix parts of the graph
 - Perform a weighted matching
- Random Hungarian Search
 - Random graph optimized by HS

G. Huang and A. Lim, "A hybrid genetic algorithm for three-index assignment problem," in IEEE CEC, vol. 4, 2003, pp.2762-2768.

Genetic Hungarian Search

- Genetic Algorithm
 - Iteratively search for better graphs
 - Optimize with HS
- Partially Mapped Crossover

$$P_1 = \begin{pmatrix} 3 & 4 & 8 & | & 2 & 7 & 1 & | & 6 & 5 \end{pmatrix}$$
$$P_2 = \begin{pmatrix} 4 & 2 & 5 & | & 1 & 6 & 8 & | & 3 & 7 \end{pmatrix}$$

G. Huang and A. Lim, "A hybrid genetic algorithm for three-index assignment problem," inIEEE CEC, vol. 4, 2003, pp.2762-2768.

Initialized Round Search (IRS) [Proposed]

- Algorithm
 - Run TRM
 - Run HS on the results
- Speed of TRM
- Performance of HS
- Still 3-approximate

Local Ratio (LR)

- Creates an order of edges
 Linear programming
- Local Ratio Subroutine
 - Recursive
 - Prunes bad edges
 - Adds first edge in ordering to matching

```
 \max \sum_{e \in E} x_e w_e 
s.t.  \sum_{e \in A(v)} x_e w_e \le 1 \quad \forall x_e 
 x_e \ge 0 \quad \forall x_e
```

Y. H. Chan and L. C. Lau, "On linear and semidefinite programming relaxations for hypergraph matching," Math. Program, vol. 135, no. 1, pp. 123–148, 2012.

Simulation Set Up

- NYC, Boston, and Washington DC data sets
 - May 2021
- Random workers
 - Within 500m of stations
- Time slices
 - 100-400 nodes
- Workers per overflow/underflow target
 - 1/5-5x
- Trials per data set

• 62

Detour Distance

Run-Times

Algorithm Performance

TABLE II: Increase in Travel Distance (%)

	TRM*	RHS	IRS	GHS	LR
1/5	0.14	0.09	0.05	0.16	0.03
1/4	0.15	0.09	0.06	0.15	0.05
1/3	0.16	0.1	0.08	0.15	0.07
1/2	0.21	0.13	0.12	0.16	0.11
1	0.47	0.45	0.44	0.45	0.43
2	0.17	0.15	0.15	0.14	0.14
3	0.09	0.08	0.09	0.08	0.08
4	0.06	0.05	0.06	0.05	0.05
5	0.05	0.04	0.05	0.04	0.04

TABLE III: Run-Times (s)

	TRM	RHS	IRS	GHS	LR
1/5	0.03	0.09	0.08	14.31	2.02
1/4	0.03	0.11	0.09	15.07	2.64
1/3	0.03	0.14	0.12	15.74	3.77
1/2	0.04	0.21	0.17	16.75	6.30
1	0.05	0.47	0.36	19.40	16.75
2	0.86	6.14	4.45	140.76	40.29
3	1.7	11.71	8.47	255.82	69.38
4	2.52	17.60	12.50	372.20	105.25
5	3.34	23.50	16.81	487.48	148.07

Worker Feedback Loop

How Many Targets?

- Too Few Workers = Poor Rebalancing
- Less Detour = More Satisfaction
- More workers = Better Assignments
- Balance worker/target ratio

Simulation Conclusion

- TRM provides speed
- Local Ratio provides accuracy
- IRS provides a good balance
- Worker Feedback Loop
 - Manage station targets

Conclusions

- Bike sharing systems
 - Rebalancing is a major issue
- Graph theory solutions
- Introduced algorithms to BSS
- IRS: a good speed-performance trade-off

Questions?

Emails: tjohnson360@gatech.edu; jiewu@temple.edu This research was supported in part by NSF REU site grant CNS 1757533.